White-opaque switching in Candida albicans.

نویسندگان

  • Matthew B Lohse
  • Alexander D Johnson
چکیده

The human commensal yeast Candida albicans undergoes an epigenetic switch between two distinct types of cells, referred to as white and opaque. These two cell types differ in many respects, including their cell and colony morphologies, their metabolic states, their mating behaviors, their preferred niches in the host, and their interactions with the host immune system. Each of the two cell types is heritable for many generations and switching between them appears stochastic; however, environmental cues can significantly alter the frequency of switching. We review recent work on white-opaque switching, including the establishment of the transcriptional circuit underlying this switch, the identification of environmental signals that affect switching rates, newly discovered differences between the two types of cells, and the involvement of white-opaque switching in biofilm formation. We also review recent speculation on the evolution and adaptive value of white-opaque switching.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmental Induction of White–Opaque Switching in Candida albicans

Candida albicans strains that are homozygous at the mating type locus (MTLa or MTLalpha) can spontaneously switch at a low frequency from the normal yeast cell morphology (white) to an elongated cell type (opaque), which is the mating-competent form of the fungus. The ability to switch reversibly between these two cell types also contributes to the pathogenicity of C. albicans, as white and opa...

متن کامل

White-Opaque Switching in Candida albicans Is Controlled by Mating-Type Locus Homeodomain Proteins and Allows Efficient Mating

Discovered over a decade ago, white-opaque switching in the human fungal pathogen Candida albicans is an alternation between two quasistable, heritable transcriptional states. Here, we show that white-opaque switching and sexual mating are both controlled by mating type locus homeodomain proteins and that opaque cells mate approximately 10(6) times more efficiently than do white cells. These re...

متن کامل

Differential Phagocytosis of White versus Opaque Candida albicans by Drosophila and Mouse Phagocytes

The human fungal pathogen Candida albicans resides asymptomatically in the gut of most healthy people but causes serious invasive diseases in immunocompromised patients. Many C. albicans strains have the ability to stochastically switch between distinct white and opaque cell types, but it is not known with certainty what role this switching plays in the physiology of the organism. Here, we repo...

متن کامل

White-Opaque Switching in Natural MTLa/α Isolates of Candida albicans: Evolutionary Implications for Roles in Host Adaptation, Pathogenesis, and Sex

Phenotypic transitions play critical roles in host adaptation, virulence, and sexual reproduction in pathogenic fungi. A minority of natural isolates of Candida albicans, which are homozygous at the mating type locus (MTL, a/a or α/α), are known to be able to switch between two distinct cell types: white and opaque. It is puzzling that white-opaque switching has never been observed in the major...

متن کامل

Alpha-pheromone-induced "shmooing" and gene regulation require white-opaque switching during Candida albicans mating.

A 14-mer alpha-pheromone peptide of Candida albicans was chemically synthesized and used to analyze the role of white-opaque switching in the mating process. The alpha-pheromone peptide blocked cell multiplication and induced "shmooing" in a/a cells expressing the opaque-phase phenotype but not in a/a cells expressing the white-phase phenotype. The alpha-pheromone peptide induced these effects ...

متن کامل

TOS9 regulates white-opaque switching in Candida albicans.

In Candida albicans, the a1-alpha2 complex represses white-opaque switching, as well as mating. Based upon the assumption that the a1-alpha2 corepressor complex binds to the gene that regulates white-opaque switching, a chromatinimmunoprecipitation-microarray analysis strategy was used to identify 52 genes that bound to the complex. One of these genes, TOS9, exhibited an expression pattern cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current opinion in microbiology

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2009